Introducing The WUWT Beaufort Sea Ice Reference Page – With Observations

Guest Post by WUWT Regular “Just The Facts”

With Arctic Sea Ice minimum rapidly approaching, we are pleased to introduce the WUWT Beaufort Sea Ice Page. Beaufort Sea Ice has been an important factor in the recent recovery in Arctic Sea Ice from the record low Arctic Sea Ice Area minimum that occurred in 2012. “In October 2013, CryoSat measured about 9000 cubic km of sea ice – a notable increase compared to 6000 cubic km in October 2012.” “The volume of ice measured” was “about 50% higher compared to” 2012 and “about 90% of the increase is due to growth of multiyear ice – which survives through more than one summer without melting”. “Thick, multiyear ice indicates healthy Arctic sea-ice cover.” ESA

National Snow & Ice Data Center (NSIDC) – click to view at source

In the graph above, you can see the large drop that occurred in Beaufort Sea Ice Extent during 2012 minimum, and in the graph below, you can see that thus far in 2014 Beaufort Sea Ice Area has experienced its smallest decline since 2005:

Cryosphere Today – University of Illinois – Polar Research Group – Click the pic to view at source

The reason that Beaufort Sea Ice is more resilient this year compared to 2012, is that the Sea Ice that remains in the Beaufort Sea is thicker this year:

Naval Research Laboratory (NRL) – HYCOM Consortium for Data-Assimilative Ocean Modeling – Click the pic to view at source

2 – 3 meter thick multi-year sea ice is much more resilient to breakup and melting than meter thick first year ice. If you watch this 30 day Sea Ice Thickness Nowcast/Forecast animation;

Naval Research Laboratory (NRL) – HYCOM Consortium for Data-Assimilative Ocean Modeling – Click the pic to view at source

you can see that while multi-year ice certainly isn’t impervious to break up and melting, e.g. from strong storms , it is certainly holding its own against the natural forces illustrated in this Lead Area Opening Rate Nowcast/Forecast animation:

Naval Research Laboratory (NRL) – HYCOM Consortium for Data-Assimilative Ocean Modeling – Click the pic to view at source

So what does thicker sea ice imply for the putative Arctic Death Spiral? Well Neven, a recovering Sea Ice Melt Enthusiast, recently noted that:

“Last month I wrote:

If this keeps up until the minimum, the 2014 melting season will have been excellent for restoring some of the ice lost since the first big volume drop in 2007.

And it has kept up. The difference with the post-2010 years and 2007 has increased a little bit more, and sea ice volume levels according to PIOMAS are effectively at the same level they were in 2009. In short, an astounding rebound. It was always clear that the Arctic could be very volatile, but this swing is huge and shows what two consecutive melting seasons with conditions that are relatively good for ice retention (2013 was cold and cloudy, 2014 cold and cloudy at the start, followed by little movement) can mean for the ice pack.”

“Last year’s rebound had all but disappeard at the start of this year’s melting season, but with the minimum just around the corner, this year’s even larger rebound is bound to have consequences for at least the next melting season, as the current level is comparable to that of 2009. It took some very large volume drops after 2009 for the 2012 melting season to drop off the cliff so spectacularly.” Arctic Sea Ice Blog

Seems that we may be safe from death spirals for at least a few years… One other observation on Beaufort Sea Ice. Last year we discussed how Mackenzie River discharge into the Beaufort Sea can influence Sea Ice, and that it might have an anthropogenic component because:

“As of 2001, approximately 397,000 people lived in the Mackenzie River basin”

“the heaviest use of the watershed is in resource extraction – oil and gas in central Alberta, lumber in the Peace River headwaters, uranium in Saskatchewan, gold in the Great Slave Lake area and tungsten in the Yukon.”

“Although the entire main stem of the Mackenzie River is undammed, many of its tributaries and headwaters have been developed for hydroelectricity production, flood control and agricultural purposes.”

“The river discharges more than 325 cubic kilometres (78 cu mi) of water each year, accounting for roughly 11% of the total river flow into the Arctic Ocean. The Mackenzie’s outflow holds a major role in the local climate above the Arctic Ocean with large amounts of warmer fresh water mixing with the cold seawater.” Wikipedia – Mackenzie River

“Oil and gas development is already extensive in the basin, primarily in the Alberta and BC portions, and much more is expected in the future. For example, a proposal to develop the vast natural gas reserves that are found in the Mackenzie Delta is currently being evaluated. This will require the development of a pipeline along the Mackenzie, which will also facilitate development of gas resources in NWT (GNWT 2007). Perhaps the most significant current fossil energy development at this time is the oil sands (also known as the “tar sands”) in Alberta, near the City of Fort McMurray (Figure 1). An estimated 300 billion barrels of recoverable fossil energy is found in these deposits (MRBB 2003). Development is proceeding rapidly. At the end of 2009, four mines were in operation, with three additional mines approved or under development. In 2008, these projects were producing 1.3 million barrels/day. Production of 3 million barrels/day is expected by 2018, with 2030 production levels reaching 5 million barrels/day by 2030 (Holroyd and Simieritsch 2009; Government of Alberta 2010).”TRANSBOUNDARY WATER GOVERNANCE IN THE MACKENZIE RIVER BASIN, CANADA – Rob C. de Loë

Earlier this year our understanding of the influence Mackenzie River discharge on Sea Ice was singifacantly improved by this paper, “Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea”, Nghiem, et al. 2014, i.e.:

Mackenzie River discharge and bathymetry effects on sea ice in the Beaufort Sea are examined in 2012 when Arctic sea ice extent hit a record low. Satellite-derived sea surface temperature revealed warmer waters closer to river mouths. By 5 July 2012, Mackenzie warm waters occupied most of an open water area about 316,000 km2. Surface temperature in a common open water area increased by 6.5°C between 14 June and 5 July 2012, before and after the river waters broke through a recurrent landfast ice barrier formed over the shallow seafloor offshore the Mackenzie Delta. In 2012, melting by warm river waters was especially effective when the strong Beaufort Gyre fragmented sea ice into unconsolidated floes. The Mackenzie and other large rivers can transport an enormous amount of heat across immense continental watersheds into the Arctic Ocean, constituting a stark contrast to the Antarctic that has no such rivers to affect sea ice.

This supported the findings of an earlier paper “The influence of river discharge on the thawing of sea ice, Mackenzie River Delta: albedo and temperature analyses” Dean et al. 1994; i.e.:

Multi-temporal satellite images, field observations and field measurements were used to investigate the mechanisms by which sea ice melts offshore from the Mackenzie River Delta. Satellite data recorded between April and August 1986 were corrected to a map projection and calibrated such that albedo and temperature values could be compared. Three stages in the melting of sea ice were identified: flooding (overflows), insolation and melting by warm river water. The albedo values of overflows were as much as 1/7 that of ice values while the albedo of ice decreased by 1/3 over the summer. Approximately two weeks after the overflows develop, sea surface temperatures rise as the river-discharge peaks and becomes the dominant source of energy. By this process, ice removal in the delta regime is initiated two months earlier than adjacent coasts with minimal runoff. However, the net result is only a two-week acceleration of ice removal in the delta region.

This NASA article about Nghiem, et al. 2014 summarized their findings as follows:

“The team analyzed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA’s Terra satellite to examine sea ice patterns and sea surface temperatures in the Beaufort Sea. They observed that on June 14, 2012, a stretch of landfast sea ice (sea ice that is stuck to the coastline) formed a barrier that held the river discharge close to its delta. After the river water broke through the ice barrier, sometime between June 14 and July 5, the team saw that the average surface temperature of the area of open water increased by 11.7 degrees Fahrenheit (6.5 degrees Celsius).

“When the Mackenzie River’s water is held back behind the sea ice barrier, it accumulates and gets warmer later in the summer,” said Nghiem. “So when it breaks through the barrier, it’s like a strong surge, unleashing warmer waters into the Arctic Ocean that are very effective at melting sea ice. Without this ice barrier, the warm river waters would trickle out little by little, and there would be more time for the heat to dissipate to the atmosphere and to the cooler, deeper ocean.”

“If you have an ice cube and drop a few water droplets on it, you’re not going to see rapid melt,” said co-author Dorothy Hall of NASA’s Goddard Space Flight Center in Greenbelt, Md. “But if you pour a pitcher of warm water on the ice cube, it will appear to get smaller before your eyes. When warm river water surges onto sea ice, the ice melts rapidly.”

Nghiem’s team has linked this sea ice barrier, which forms recurrently and persistently in this area, to the physical characteristics of the shallow ocean continental shelf, and concludes the seafloor plays a role in delaying river discharge by holding the barrier in place along the shore of the Mackenzie delta.

The team estimated the heating power carried by the discharge of the 72 rivers in North America, Europe and Asia that flow into the Arctic Ocean. Based on published research of their average annual river discharge, and assuming an average summer river water temperature of around 41 degrees Fahrenheit (5 degrees Celsius), they calculated that the rivers are carrying as much heat into the Arctic Ocean each year as all of the electric energy used by the state of California in 50 years at today’s consumption rate.”

In the Nowcast/Forecast animation below you can see the warm water emanating from the Mackenzie River delta here:

Naval Research Laboratory (NRL) – HYCOM Consortium for Data-Assimilative Ocean Modeling – Click the pic to view at source

All of the graphs, graphics and animations above, along with an array of others, can be found on the new WUWT Beaufort Sea Ice Page. In addition to the WUWT Beaufort Sea Ice Page if you have not had the opportunity to review our other Reference Pages they are highly recommended:

Please note that WUWT cannot vouch for the accuracy of the data within the Reference Pages, as WUWT is simply an aggregator. All of the data is linked from third party sources. If you have doubts about the accuracy of any of the graphs on the WUWT Reference Pages, or have any suggested additions or improvements to any of the pages, please let us know in comments below.