Guest Post by Willis Eschenbach
I came across a curious graph and claim today in a peer-reviewed scientific paper. Here’s the graph relating sunspots and the change in sea level:
And here is the claim about the graph:
Sea level change and solar activity
A stronger effect related to solar cycles is seen in Fig. 2, where the yearly averaged sunspot numbers are plotted together with the yearly change in coastal sea level (Holgate, 2007). The sea level rates are calculated from nine distributed tidal gauges with long records, which were compared with a larger set of data from 177 stations available in the last part of the century. In most of the century the sea level varied in phase with the solar activity, with the Sun leading the ocean, but in the beginning of the century they were in opposite phases, and during SC17 and 19 the sea level increased before the solar activity.
Let me see if I have this straight. At the start of the record, sunspots and sea level moved in opposite directions. Then for most of the time they were in phase. In both those cases, sunspots were leading sea level, suggesting the possibility that sunspots might affect sea level … except in opposite directions at different times. And in addition, in about 20% of the data, the sea level moved first, followed by the sunspots, suggesting the possibility that at times, the sea level might affect the number of sunspots …
Now, when I see a claim like that, after I get done laughing, I look around for some numerical measure of how similar the two series actually are. This is usually the “R2” (R squared) value, which varies from zero (no relationship) to 1 (they always move proportionately). Accompanying this R2 measure there is usually a “p-value”. The p-value measures how likely it is that we’re just seeing random variations. In other words, the p-value is the odds that the outcome has occurred by chance. A p-value of 0.05, for example, means that the odds are one in twenty that it’s a random occurrence.
So … what did the author of the paper put forwards as the R2 and p-value for this relationship?
Sad to relate, that part of the analysis seems to have slipped his mind. He doesn’t give us any guess as to how correlated the two series are, or whether we’re just looking at a random relationship.
So I thought, well, I’ll just get his data and measure the relationship myself. However, despite the journal’s policy requiring public archiving of the data necessary for replication, as is too common these days there was no public data, no code, and not even a Supplementary Online Information.
However, years of messing around with recalcitrant climate scientists has shown me that digitizing data is both fast and easy, so I simply digitized the graph of the data so I could analyze it. It’s quite accurate when done carefully.
And what did I find? Well, the R2 between sunspots and sea level is a mere 0.13, very little relationship. And even worse, the p-value of the relationship is 0.08 … sorry, no cigar. There is no statistically significant relationship between the two. In part this is because both datasets are so highly auto-correlated (~0.8 for both), and in part it’s because … well, it’s because as near as we can tell, sunspots [or whatever sunspots are a proxy for] don’t affect the sea level.
My conclusions from this, in no particular order, are:
• If this is the author’s “stronger effect related to solar cycles”, I’m not gonna worry about his weaker effect.
• This is not science in any sense of the word. There is no data. There is no code. There is no mathematical analysis of any kind, just bald assertions of a “stronger” relationship.
• Seems to me the idea that sunspots rule sea level would be pretty much scuttled by sunspot cycles 17 and 19 where the sea level moves first and sunspots follow … as well as by the phase reversal in the early data. At a minimum, you’d have to explain those large anomalies to make the case for a relationship. However, the author makes no effort to do so.
• The reviewers, as is far too often the case these days, were asleep at the switch. This study needs serious revision and buttressing to meet even the most minimal scientific standards.
• The editor bears responsibility as well, because the study is not replicable without the data as used, and the editor has not required the author to archive the data.
So … why am I bothering with a case of pseudo-science that is so easy to refute?
Because it is one of the papers in the Special Issue of the Copernicus journal, Pattern Recognition in Physics … and by no means the worst of the lot. There has been much disturbance in the farce lately regarding the journal being shut down, with many people saying that it was closed for political reasons. And perhaps that is the case.
However, if I ran Copernicus, I would have shut the journal down myself, but not for political reasons. I’d have closed it as soon as possible, for both scientific and business reasons.
I’d have shut it for scientific reasons because as we see in this example, peer-review was absent, the editorial actions were laughable, the authors reviewed each others papers, and the result was lots of handwaving and very little science.
And I’d have shut it for business reasons because Copernicus, as a publisher of scientific journals, cannot afford to become known as a place where reviewers don’t review and editors don’t edit. It would make them the laughing stock of the journal world, and being the butt of that kind of joke is something that no journal publisher can survive.
To me, it’s a huge tragedy, for two reasons. One is that I and other skeptical researchers get tarred with the same brush. The media commentary never says “a bunch of fringe pseudo-scientists” brought the journal down. No, it’s “climate skeptics” who get the blame, with no distinctions made despite the fact that we’ve falsified some of the claims of the Special Issue authors here on WUWT.
The other reason it’s a tragedy is that they were offered an unparalleled opportunity, the control of special issue of a reputable journal. I would give much to have the chance that they had. And they simply threw that away with nepotistic reviewing, inept editorship, wildly overblown claims, and a wholesale lack of science.
It’s a tragedy because you can be sure that if I, or many other skeptical researchers, got the chance to shape such a special issue, we wouldn’t give the publisher any reason to be unhappy with the quality of the peer-review, the strength of the editorship, or the scientific quality of the papers. The Copernicus folks might not like the conclusions, but they would be well researched, cited, and supported, with all data and code made public.
Ah, well … sic transit gloria monday, it’s already tuesday, and the struggle continues …
w.
PS—Based on … well, I’m not exactly sure what he’s basing it on, but the author says in the abstract:
The recent global warming may be interpreted as a rising branch of a millennium cycle, identified in ice cores and sediments and also recorded in history. This cycle peaks in the second half of this century, and then a 500 yr cooling trend will start.
Glad that’s settled. I was concerned about the next half millennium … you see what I mean about the absence of science in the Special Edition.
PPS—The usual request. I can defend my own words. I can’t defend your interpretation of my words. If you disagree with something I or anyone has written, please quote the exact words that you object to, and then tell us your objections. It prevents a host of misunderstandings, and it makes it clear just what you think is wrong, and why.
